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Let W:= e - Q, where Q: ~ ---+ ~ is even, continuous in IR, Q" is continuous in
(0, w), and Q' > 0 in (0, x), while for some A, B> 1,

d. , Q'A ~ dx (xQ (x»)/ (x) ~ B, X E (0, OC!).

For example, W(x)=exp(-Ixl'), IX>I, satisfies these hypotheses. Let Pn(W 2,x)
denote the nth orthonormal polynomial for the weight W 2

, n;;> J, and let
an = an(Q) denote the 11th Mhaskar-Rahmanov-SalT number for Q. We show that
for O<p<w, and n;;>2,

p<4,

p=4,

p>4.

The results are based on bounds for Pn( W 2
, .) estabJished recently by A. L. Levin

and one of the authors. '0 1994 Academic Press, Inc.

l. INTRODUCTION AND RESULTS

Let W 2 := e- 2Q
, where Q: ~ -> ~ is even, continuous, and is of "smooth

polynomial growth" at infinity. Such a weight is often called a Freud weight
[7, p. 83fT], and perhaps the archetypal example is

(X >0.

* Research completed while the author was visiting Witwatersrand University.
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Corresponding to the weight W 2
, we can define orthonormal polynomials

}'n>O, n ~O,

satisfying

r- Pn(W 2,x)Pm(W2,x) W 2(x)dx=<>mn,
-ex:;

m, n~O.

Recently, A. L. Levin and the first author [4] established bounds for
Pn( W 2

, x) for a class of Freud weights that includes exp( -Ixn, a> 1.
Here we use these bounds, and other results in [3,4] to estimate, both
above and below, the L p norms of Pn( W 2

, .) W(·). Such L p estimates are
useful in studying convergence of Lagrange interpolation and orthogonal
expansions in weighted L p norms.

To state our result, we need the Mhaskar~Rahmanov~Saffnumber au
[5,6], the positive root of the equation

u>O. (1.1 )

Under the conditions on Q below, which guarantee that Q(s) and Q'(s)
increase strictly in (0, (0), au is uniquely defined, and increases with u. It
grows roughly like Q[-1 1(u), where Q[-I] denotes the inverse of Q on
(0, CfJ).

We use - in the following sense: If {bn}::: 0 and {cn} ::: 0 are sequences
of non-zero real numbers, we write

if there exist C I' C 2 > 0 independent of n, such that

Following is our result:

THEOREM 1. Let W:= e - Q, where Q: JR ~ JR is even and continuous in JR,
Q" is continuous in (0, (0), and Q' > 0 in (0, ex)), while for some A, B> I,

A ~~ (xQ'(x))/Q'(x) ~ B, X E (0, ex)). (1.2 )
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Let an = an(Q) denote the nth Mhaskar-Rahmanov-Saff number for Q.
Then, given, 0 < P < 00, we have for n ~ 2,

{

I, p<4,

II Pn( W 2
, • ) W(-)II LpCR) - a~/p - 1/2 X (log n )1/4, P = 4,

(n- 2/3 )I/p-I/4, P >4.

For W(x) = Wa(x)=exp(-Ixl a), an-n l
/
a, and so we deduce that

(1.3)

p<4,

p=4,

p>4.

For the Hermite weight Wz, more precise asymptotics were given for P = 4
by G. Freud and G. Nemeth [2], in connection with a problem ofCieselski
on the monotonicity properties of the weighted L p norms of orthonormal
Hermite functions.

We prove the theorem in the next section.

2. PROOFS

Throughout, C, CI' C2, ... , denote positive constants independent of n, x,
and P E &:., where &:. denotes the set of real polynomials of degree ~ n. The
same symbol does not necessarily denote the same constant in different
occurrences.

As stated in the Introduction, our proofs depend on results from [4].
Throughout, we assume the hypotheses and notation of Theorem 1. First,
we recall bounds from [4]: For simplicity, we write for n~ 1,

LEMMA 2.1. (a) Forn~l,

sup IPn(x)1 W(x) 11 -lxl/an l l
/
4

'" a; 1/2,

XE [R

and

sup IPn(x)1 W(x) _ n l /6a; 1/2,

xER

(b) For n ~ 1 and x E IR,

(2.1 )

(2.2)

IPn(x)1 W(x) ~ Ca; 1/2/[ 11 - lxi/ani 1/4 + n - 1/6]. (2.3)
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Proof (a) These are Corollary 1.4 in [4].

(b) This follows directly from (2.1) and (2.2). I
Next, we recall a suitable infinite-finite range inequality:
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LEMMA 2.2. Let 0 < p < 00. There exists C> 0 such that for n ~ 1 and
PE gil",

IIPWII Lp(R):::; C IIPWII L p[ -a•• a.]'

Proof This is a special case of Theorem 1.8 in [4]. I
We can now prove the upper bounds implicit in (1.3):

(2.4 )

PROPOSITION 2.3. Let 0 < p < C1'J. There exists C2 such that for n ~ 2,

p<4,

p=4,

p>4.

(2.5 )

Proof By Lemma 2.1 (b), and Lemma 2.2,

lip" WII~p(R):::; C3 f· a,;-P/2[11_lxl/a,,1 1
/
4 +n- 1

/
6

] -P dx
-a.

n2/J

=2C3a~-p/2nP/6-2/3 f [t 1/4 +1]-Pdt, (2.6)
o

by the substitution 1- x/a" = n - 2/3 t . Here

{

(n 2/ 3 )I-PI4

(2/3 [t 1/4 + 1] -p dt:::; 1+r2iJ

t- p/4 dt'" log n, '

1,

p<4,

p=4,

p>4.

(2.7)

Then (2.6) and (2.7) yield (2.5) on taking pth roots. I
In proving the lower bounds corresponding to Proposition 2.3, we need

more results from [3,4]. First, we recall a Markov-Bernstein inequality:

LEMMA 2.4. For n~ 1, PE&", and xEIR,

I(PWY (x)l:::; C 1 ; max{n-2/3, 1-lxl/a,,}1/2 IIPWIILx(R)' (2.8)
"
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Proof See [3, Theorems 1.1, 1.3, pp.1066-1067]. Note that our
restriction A > 1 forces

f
en ds n

Q[--l]( )~-.
1 S an

See (1.26)-(1.27) and Lemma 5.2(f) in [4]. I

We denote the zeros of Pn(x) by

- 00 < x"" < X n _ 1. ,,< ... < X 2" < X In < 00.

The fundamental polynomials of Lagrange interpolation are Ijn E &:._ 1

satisfying

1 ~j, k ~n.

If we define the nth Christoffel function [7, p.9]

).n( W 2, x):= inf r'" (PW)2 (t) dt/P2(x)
PE ·'1Pn -1 - ,X]

= 1rt~ p](x),

then it is known that

I () 1 (W 2 ) y" -- 1 () Pn(x)j" X =An ,Xj" --Pn-I X j" --.
y" X-Xj "

See, for example, [8, p. 6] or [1, p.23].

LEMMA 2.5. (a) For n?- 1 and Ixi ~ an,

2 an 2 {-2/3 !X!}-1/2An(W ,x)~- W (x) max n ·,1-- .
n an

(b) For n ?-1,

and uniformly for n?- 3 and 2 ~j~ n - 1,

(2.9 )

(2.10 )

(2.11 )
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(c) Uniformly for n~2 and 1~j~n-1,

47

(d) Uniformly for 1~j ~ n - 1 and n ~ 2,

(e) Forn~1, 1~k~n,andxEIR,

(f) For n ~ 1,

Proof (a) This is Theorem 1.1 (a) in [4].

(b) This is Corollary 1.2 in [4].

(c) This is (11.1 0) in [4].

(d) This is Corollary 1.3 in [4].

(e) This is Theorem 12.3(a) in [4].

(f) This is Theorem 12.3(b) in [4]. I

LEMMA 2.6. (a) Uniformly for n ~ 1, 1~j~ n, and x E IR,

(2.16 )

(b) Uniformly for n ~ 1, 1~j~n, and XE IR,

(2.18)

(c) There exists C1> 0, such that uniformly for n ~ 1, 1~ j ~ n, and

we have

640/77/1-4
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Proof (a) This is an immediate consequence of (2.9), (2.10), (2.14),
and (2.16).

(b) By (2.17) and (2.15), we have

-I (maX{n- 213
, I-lxi/a,,} )1/4

Ilj,,(x)1 W (xj,,) W(x) ~ C {-2/3 1_I .I/} .
max n , Xl" a"

If for some fixed A. > 0,

max {n -213, 1 - lxi/a,,} ~ Amax {n -2/3, 1 - Ixj"l/a,,}, (2.21)

then we obtain (2.18). If we set

1=1,2, then (2.13) shows that (2.21) is true for XE(Xj _2,n,Xj + 2,n)' with
a suitably large A. On the other hand, if (2.21) is not true, so that
x ¢ (xj _ 2. n' XJ+ 2.")' then (2.3) and (2.17) show that

I'jn(x)! W-J(xjn ) W(x)

~ C a 3/ 2/n max{n -2/3 1 - Ix. I/a } -1/4-....;::: 2 n , In PI

xa;I/2[11-lxl/anIJ/4+n-I/6]-llxj±2.n-Xjnl-J

~ C3 max {n -213, 1- Ixjnl/an} J/4 [11 - lxi/ani 1/4 + n -1/6r 1

(by (2.12) and (2.13))

~ C (max{n-
213

, 1-/xjn l/an})1/4 ~ A-1/4

'" 4 {2/3 1 / I/} '" C4 ,max n ,- x a"

as (2.21) does not hold. So we still have (2.18). Thus (2.18) holds for XE IR.

(c) Consider the polynomial

rjn(x) := Ijn(x) W-1(xjn ).

We have

(rjn W)(xjn ) = 1,

and according to (b) of this lemma,

II r j n WI/ Loo(R) ~ C,

with C independent of j and n. Now let rt > 0 be fixed, and let
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Let X I - I• n and Xn+l.n' /=1,2, be as defined in (b). Now if '1 is small
enough (the upper bound on '7 being independent of j, n), (2.11) and (2.12)
show that uniformly for 1~ j ~ n,

(2.23 )

Furthermore, for s E (xjn - B, x jn + B), (2.13) and the Markov-Bernstein
inequality Lemma 2.4 show that

Hence, if 1 E (Xjn - B, Xjn + B), we have for some s between 1 and Xjn ,

n
>-1 - C - max{n- 2/3 I-Ix I/a }1/2 B
~ 1 ,~ n

an

= 1 - C 1 '7 ~ 1/2,

if '7 in the choice (2.22) of B is small enough. Thus

1E (Xjn - B, Xjn + B),

and recalling (2.17) and the definition of 'jn, we have (2.20). I
Proof of Theorem 1. Fix 1~j~ n, and with C 1 as in (2.19), let

Then, recalling (2.23), we have

f+2.n IPn WI (xV dx
XJ -2,n

~ C2 fn H

(n/a~/2 max{n- 2
/
3

, l-lxjn l/an}1/4y Ix -xjnl P dx
Xl" - e

(by (2.20))

~ C3(n/a~/2 max {n- 2/3, 1 - iXjnl/an} 1/4y BP + 1

~ C3a~ -p/2/n max{n- 2/3, l-Ixjn l/an} -p/4-1/2

...... C -P/2( ) {-2/3 1 I 1/ }-p/4;:/ 4an x j - 2.n-Xj+2.n max n , - x jn an

(by (2.12) and (2.13))

~ Csa;;p/2 fJ+2.n max {n - 2/3, 1 - 111 /an} -p/4 d1,
Xj_ 2,n
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in view of (2.13). Summing, we have

~ Csa;;p/2 fin max{n- 2/3, I-Ill/an} -p/4 dl
X M

(by (2.11»

p~4,

p=4,

p>4.

Hence

{

I,

lip WII >-C a l /p - I / 2 x (logn)I/4n L p(lR) ". 8 n ,

(n -2/3)I/P-I/4,

Together with Proposition 2.3, this yields the result.
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