The Weighted L_{ρ}-Norms of Orthonormal Polynomials for Freud Weights

D. S. Lubinsky
Department of Mathematics, University of the Witwatersrand, P.O. Wits 2050, Republic of South Africa

AND
F. Moricz*

Bolyai Institute, University of Szeged, Aradi Vertanuk tere 1, 6720 Szeged, Hungary

Communicated by Walter Van Assche
Received April 28, 1992; accepted September 21, 1992

Let $W:=e^{-Q}$, where $Q: \mathbb{R} \rightarrow \mathbb{R}$ is even, continuous in $\mathbb{R}, Q^{\prime \prime}$ is continuous in $(0, \infty)$, and $Q^{\prime}>0$ in $(0, \infty)$, while for some $A, B>1$,

$$
A \leqslant \frac{d}{d x}\left(x Q^{\prime}(x)\right) / Q^{\prime}(x) \leqslant B, \quad x \in(0, \infty)
$$

For example, $W(x)=\exp \left(-|x|^{x}\right), \alpha>1$, satisfies these hypotheses. Let $p_{n}\left(W^{2}, x\right)$ denote the nth orthonormal polynomial for the weight $W^{2}, n \geqslant 1$, and let $a_{n}=a_{n}(Q)$ denote the nth Mhaskar-Rahmanov-Saff number for Q. We show that for $0<p<\infty$, and $n \geqslant 2$,

$$
\left\|p_{n}\left(W^{2}, \cdot\right) W(\cdot)\right\|_{L_{p}(\mathrm{~K})} \sim a_{n}^{1 / p-1 / 2} \times \begin{cases}1, & p<4, \\ (\log n)^{1 / 4}, & p=4, \\ \left(n^{-2 / 3}\right)^{1 / p-1 / 4}, & p>4\end{cases}
$$

The results are based on bounds for $p_{n}\left(W^{2}, \cdot\right)$ established recently by A. L. Levin and one of the authors. O 1994 Academic Press, Inc.

1. Introduction and Results

Let $W^{2}:=e^{-2 Q}$, where $Q: \mathbb{R} \rightarrow \mathbb{R}$ is even, continuous, and is of "smooth polynomial growth" at infinity. Such a weight is often called a Freud weight [7, p. 83ff], and perhaps the archetypal example is

$$
W_{\alpha}(x):=\exp \left(-|x|^{\alpha}\right), \quad \alpha>0 .
$$

[^0]Corresponding to the weight W^{2}, we can define orthonormal polynomials

$$
p_{n}\left(W^{2}, x\right)=\gamma_{n} x^{n}+\cdots, \quad \gamma_{n}>0, n \geqslant 0,
$$

satisfying

$$
\int_{-\infty}^{\infty} p_{n}\left(W^{2}, x\right) p_{m}\left(W^{2}, x\right) W^{2}(x) d x=\delta_{m n}, \quad m, n \geqslant 0
$$

Recently, A. L. Levin and the first author [4] established bounds for $p_{n}\left(W^{2}, x\right)$ for a class of Freud weights that includes $\exp \left(-|x|^{\alpha}\right), \alpha>1$. Here we use these bounds, and other results in $[3,4]$ to estimate, both above and below, the L_{p} norms of $p_{n}\left(W^{2}, \cdot\right) W(\cdot)$. Such L_{p} estimates are useful in studying convergence of Lagrange interpolation and orthogonal expansions in weighted L_{p} norms.

To state our result, we need the Mhaskar-Rahmanov-Saff number a_{u} $[5,6]$, the positive root of the equation

$$
\begin{equation*}
u=\frac{2}{\pi} \int_{0}^{1} a_{u} t Q^{\prime}\left(a_{u} t\right) d t / \sqrt{1-t^{2}}, \quad u>0 \tag{1.1}
\end{equation*}
$$

Under the conditions on Q below, which guarantee that $Q(s)$ and $Q^{\prime}(s)$ increase strictly in ($0, \infty$) , a_{u} is uniquely defined, and increases with u. It grows roughly like $Q^{[-1]}(u)$, where $Q^{[-1]}$ denotes the inverse of Q on $(0, \infty)$.

We use \sim in the following sense: If $\left\{b_{n}\right\}_{n=0}^{\infty}$ and $\left\{c_{n}\right\}_{n=0}^{\infty}$ are sequences of non-zero real numbers, we write

$$
b_{n} \sim c_{n}
$$

if there exist $C_{1}, C_{2}>0$ independent of n, such that

$$
C_{1} \leqslant b_{n} / c_{n} \leqslant C_{2}, \quad n \geqslant 1 .
$$

Following is our result:

Theorem 1. Let $W:=e^{-Q}$, where $Q: \mathbb{R} \rightarrow \mathbb{R}$ is even and continuous in \mathbb{R}, $Q^{\prime \prime}$ is continuous in $(0, \infty)$, and $Q^{\prime}>0$ in $(0, \infty)$, while for some $A, B>1$,

$$
\begin{equation*}
A \leqslant \frac{d}{d x}\left(x Q^{\prime}(x)\right) / Q^{\prime}(x) \leqslant B, \quad x \in(0, \infty) \tag{1.2}
\end{equation*}
$$

Let $a_{n}=a_{n}(Q)$ denote the $n t h$ Mhaskar-Rahmanov-Saff number for Q. Then, given, $0<p<\infty$, we have for $n \geqslant 2$,

$$
\left\|p_{n}\left(W^{2}, \cdot\right) W(\cdot)\right\|_{L_{p}(\mathbb{H})} \sim a_{n}^{1 / p-1 / 2} \times \begin{cases}1, & p<4 \tag{1.3}\\ (\log n)^{1 / 4}, & p=4 \\ \left(n^{-2 / 3}\right)^{1 / p-1 / 4}, & p>4\end{cases}
$$

For $W(x)=W_{x}(x)=\exp \left(-|x|^{\alpha}\right), a_{n} \sim n^{1 / x}$, and so we deduce that

$$
\left\|p_{n}\left(W^{2}, \cdot\right) W(\cdot)\right\|_{L_{p}(\mathbb{R})} \sim n^{(1 / \alpha)(1 / p-1 / 2)} \times \begin{cases}1, & p<4 \\ (\log n)^{1 / 4}, & p=4 \\ \left(n^{-2 / 3}\right)^{1 / p-1 / 4}, & p>4\end{cases}
$$

For the Hermite weight W_{2}, more precise asymptotics were given for $p=4$ by G. Freud and G. Nemeth [2], in connection with a problem of Cieselski on the monotonicity properties of the weighted L_{p} norms of orthonormal Hermite functions.

We prove the theorem in the next section.

2. Proofs

Throughout, C, C_{1}, C_{2}, \ldots, denote positive constants independent of n, x, and $P \in \mathscr{P}_{n}$, where \mathscr{P}_{n} denotes the set of real polynomials of degree $\leqslant n$. The same symbol does not necessarily denote the same constant in different occurrences.

As stated in the Introduction, our proofs depend on results from [4]. Throughout, we assume the hypotheses and notation of Theorem 1. First, we recall bounds from [4]: For simplicity, we write for $n \geqslant 1$,

$$
p_{n}(x):=p_{n}\left(W^{2}, x\right) .
$$

Lemma 2.1. (a) for $n \geqslant 1$,

$$
\begin{equation*}
\sup _{x \in \mathbb{R}}\left|p_{n}(x)\right| W(x)\left|1-|x| / a_{n}\right|^{1 / 4} \sim a_{n}^{-1 / 2} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{x \in \mathbb{R}}\left|p_{n}(x)\right| W(x) \sim n^{1 / 6} a_{n}^{-1 / 2} \tag{2.2}
\end{equation*}
$$

(b) For $n \geqslant 1$ and $x \in \mathbb{R}$,

$$
\begin{equation*}
\left|p_{n}(x)\right| W(x) \leqslant C a_{n}^{-1 / 2} /\left[\left|1-|x| / a_{n}\right|^{1 / 4}+n^{-1 / 6}\right] . \tag{2.3}
\end{equation*}
$$

Proof. (a) These are Corollary 1.4 in [4].
(b) This follows directly from (2.1) and (2.2).

Next, we recall a suitable infinite-finite range inequality:
Lemma 2.2. Let $0<p<\infty$. There exists $C>0$ such that for $n \geqslant 1$ and $P \in \mathscr{P}_{n}$,

$$
\begin{equation*}
\|P W\|_{\left.L_{p(\mathbb{E}}\right)} \leqslant C\|P W\|_{L_{p}\left[-a_{n}, a_{n}\right]} \tag{2.4}
\end{equation*}
$$

Proof. This is a special case of Theorem 1.8 in [4].
We can now prove the upper bounds implicit in (1.3):
Proposition 2.3. Let $0<p<\infty$. There exists C_{2} such that for $n \geqslant 2$,

$$
\left\|p_{n}\left(W^{2}, \cdot\right) W(\cdot)\right\|_{L_{p}(\mathbb{R})} \leqslant C_{2} a_{n}^{1 / p-1 / 2} \times \begin{cases}1, & p<4 \tag{2.5}\\ (\log n)^{1 / 4}, & p=4 \\ \left(n^{-2 / 3}\right)^{1 / p-1 / 4}, & p>4\end{cases}
$$

Proof. By Lemma 2.1(b), and Lemma 2.2,

$$
\begin{align*}
\left\|p_{n} W\right\|_{L_{p}(\mathrm{R})}^{p} & \leqslant C_{3} \int_{-a_{n}}^{a_{n}} a_{n}^{-p / 2}\left[\left|1-|x| / a_{n}\right|^{1 / 4}+n^{-1 / 6}\right]^{-p} d x \\
& =2 C_{3} a_{n}^{-p / 2} \int_{0}^{a_{n}}\left[\left(1-x / a_{n}\right)^{1 / 4}+n^{-1 / 6}\right]^{-p} d x \\
& =2 C_{3} a_{n}^{1-p / 2} n^{p / 6-2 / 3} \int_{0}^{n^{2 / 3}}\left[t^{1 / 4}+1\right]^{-p} d t \tag{2.6}
\end{align*}
$$

by the substitution $1-x / a_{n}=n^{-2 / 3} t$. Here

$$
\int_{0}^{n^{2 / 3}}\left[t^{1 / 4}+1\right]^{-p} d t \leqslant 1+\int_{1}^{n^{2 / 3}} t^{-p / 4} d t \sim \begin{cases}\left(n^{2 / 3}\right)^{1-p / 4}, & p<4 \tag{2.7}\\ \log n, & p=4 \\ 1, & p>4\end{cases}
$$

Then (2.6) and (2.7) yield (2.5) on taking p th roots.
In proving the lower bounds corresponding to Proposition 2.3, we need more results from [3, 4]. First, we recall a Markov-Bernstein inequality:

Lemma 2.4. For $n \geqslant 1, P \in \mathscr{P}_{n}$, and $x \in \mathbb{R}$,

$$
\begin{equation*}
\left|(P W)^{\prime}(x)\right| \leqslant C_{1} \frac{n}{a_{n}} \max \left\{n^{-2 / 3}, 1-|x| / a_{n}\right\}^{1 / 2}\|P W\|_{L_{x}(\mathbb{R})} \tag{2.8}
\end{equation*}
$$

Proof. See [3, Theorems 1.1, 1.3, pp. 1066-1067]. Note that our restriction $A>1$ forces

$$
\int_{1}^{c n} \frac{d s}{Q^{[-1]}(s)} \sim \frac{n}{a_{n}} .
$$

See (1.26)-(1.27) and Lemma 5.2(f) in [4].
We denote the zeros of $p_{n}(x)$ by

$$
-\infty<x_{n n}<x_{n-1, n}<\cdots<x_{2 n}<x_{1 n}<\infty
$$

The fundamental polynomials of Lagrange interpolation are $l_{j n} \in \mathscr{P}_{n-1}$ satisfying

$$
l_{j n}\left(x_{k n}\right)=\delta_{j k}, \quad 1 \leqslant j, k \leqslant n .
$$

If we define the nth Christoffel function [7, p. 9]

$$
\begin{aligned}
\lambda_{n}\left(W^{2}, x\right):= & \inf _{P \in: \mathscr{Y}_{n-1}} \int_{-\infty}^{\infty}(P W)^{2}(t) d t / P^{2}(x) \\
& =1 / \sum_{j=0}^{n-1} p_{j}^{2}(x)
\end{aligned}
$$

then it is known that

$$
\begin{equation*}
l_{j n}(x)=\lambda_{n}\left(W^{2}, x_{j n}\right) \frac{\gamma_{n-1}}{\gamma_{n}} p_{n-1}\left(x_{j n}\right) \frac{p_{n}(x)}{x-x_{j n}} \tag{2.9}
\end{equation*}
$$

See, for example, [8, p. 6] or [1, p. 23].

Lemma 2.5. (a) For $n \geqslant 1$ and $|x| \leqslant a_{n}$,

$$
\begin{equation*}
\lambda_{n}\left(W^{2}, x\right) \sim \frac{a_{n}}{n} W^{2}(x) \max \left\{n^{-2 / 3}, 1-\frac{|x|}{a_{n}}\right\}^{-1 / 2} \tag{2.10}
\end{equation*}
$$

(b) For $n \geqslant 1$,

$$
\begin{equation*}
\left|x_{1 n} / a_{n}-1\right| \leqslant C n^{-2 / 3} \tag{2.11}
\end{equation*}
$$

and uniformly for $n \geqslant 3$ and $2 \leqslant j \leqslant n-1$,

$$
\begin{equation*}
x_{j-1, n}-x_{j+1, n} \sim \frac{a_{n}}{n} \max \left\{n^{-2 / 3}, 1-\left|x_{j n}\right| / a_{n}\right\}^{-1 / 2} \tag{2.12}
\end{equation*}
$$

(c) Uniformly for $n \geqslant 2$ and $1 \leqslant j \leqslant n-1$,

$$
\begin{equation*}
\max \left\{n^{-2 / 3}, 1-\left|x_{j n}\right| / a_{n}\right\} \sim \max \left\{n^{-2 / 3}, 1-\left|x_{j+1, n}\right| / a_{n}\right\} . \tag{2.13}
\end{equation*}
$$

(d) Uniformly for $1 \leqslant j \leqslant n-1$ and $n \geqslant 2$,

$$
\begin{equation*}
\left|p_{n-1}\left(x_{j n}\right)\right| W\left(x_{j n}\right) \sim a_{n}^{-1 / 2} \max \left\{n^{-2 / 3}, 1-\left|x_{j n}\right| / a_{n}\right\}^{1 / 4} . \tag{2.14}
\end{equation*}
$$

(e) For $n \geqslant 1,1 \leqslant k \leqslant n$, and $x \in \mathbb{R}$,

$$
\begin{equation*}
\left|p_{n}(x)\right| W(x) \leqslant C n / a_{n}^{3 / 2} \max \left\{n^{-2 / 3}, 1-|x| / a_{n}\right\}^{1 / 4}\left|x-x_{k n}\right| . \tag{2.15}
\end{equation*}
$$

(f) For $n \geqslant 1$,

$$
\begin{equation*}
\gamma_{n-1} / \gamma_{n} \sim a_{n} . \tag{2.16}
\end{equation*}
$$

Proof. (a) This is Theorem 1.1(a) in [4].
(b) This is Corollary 1.2 in [4].
(c) This is (11.10) in [4].
(d) This is Corollary 1.3 in [4].
(e) This is Theorem 12.3(a) in [4].
(f) This is Theorem 12.3(b) in [4].

Lemma 2.6. (a) Uniformly for $n \geqslant 1,1 \leqslant j \leqslant n$, and $x \in \mathbb{R}$,

$$
\begin{equation*}
\left|l_{j n}(x)\right| \sim a_{n}^{3 / 2} / n W\left(x_{j n}\right) \max \left\{n^{-2 / 3}, 1-\left|x_{j n}\right| / a_{n}\right\}^{-1 / 4}\left|\frac{p_{n}(x)}{x-x_{j n}}\right| . \tag{2.17}
\end{equation*}
$$

(b) Uniformly for $n \geqslant 1,1 \leqslant j \leqslant n$, and $x \in \mathbb{R}$,

$$
\begin{equation*}
\left|l_{j n}(x)\right| W^{-1}\left(x_{j n}\right) W(x) \leqslant C . \tag{2.18}
\end{equation*}
$$

(c) There exists $C_{1}>0$, such that uniformly for $n \geqslant 1,1 \leqslant j \leqslant n$, and

$$
\begin{equation*}
\left|x-x_{j n}\right| \leqslant C_{1} \frac{a_{n}}{n} \max \left\{n^{-2 / 3}, 1-\left|x_{j n}\right| / a_{n}\right\}^{-1 / 2}, \tag{2.19}
\end{equation*}
$$

we have

$$
\begin{equation*}
\left|p_{n}(x)\right| W(x) \sim n / a_{n}^{3 / 2} \max \left\{n^{-2 / 3}, 1-\left|x_{j n}\right| / a_{n}\right\}^{1 / 4}\left|x-x_{j n}\right| . \tag{2.20}
\end{equation*}
$$

Proof. (a) This is an immediate consequence of (2.9), (2.10), (2.14), and (2.16).
(b) By (2.17) and (2.15), we have

$$
\left|l_{j n}(x)\right| W^{-1}\left(x_{j n}\right) W(x) \leqslant C\left(\frac{\max \left\{n^{-2 / 3}, 1-|x| / a_{n}\right\}}{\max \left\{n^{-2 / 3}, 1-\left|x_{j n}\right| / a_{n}\right\}}\right)^{1 / 4}
$$

If for some fixed $\lambda>0$,

$$
\begin{equation*}
\max \left\{n^{-2 / 3}, 1-|x| / a_{n}\right\} \leqslant \lambda \max \left\{n^{-2 / 3}, 1-\left|x_{j n}\right| / a_{n}\right\} \tag{2.21}
\end{equation*}
$$

then we obtain (2.18). If we set

$$
x_{1-l, n}:=x_{1 n}+l a_{n} n^{-2 / 3} ; \quad x_{n+l, n}:=x_{n n}-l a_{n} n^{-2 / 3}
$$

$l=1,2$, then (2.13) shows that (2.21) is true for $x \in\left(x_{j-2, n}, x_{j+2, n}\right)$, with a suitably large λ. On the other hand, if (2.21) is not true, so that $x \notin\left(x_{j-2, n}, x_{j+2, n}\right)$, then (2.3) and (2.17) show that

$$
\begin{aligned}
\left|l_{j n}(x)\right| & W^{-1}\left(x_{j n}\right) W(x) \\
\leqslant & C_{2} a_{n}^{3 / 2} / n \max \left\{n^{-2 / 3}, 1-\left|x_{j n}\right| / a_{n}\right\}^{-1 / 4} \\
& \times a_{n}^{-1 / 2}\left[\left|1-|x| / a_{n}\right|^{1 / 4}+n^{-1 / 6}\right]^{-1}\left|x_{j \pm 2, n}-x_{j n}\right|^{-1} \\
\leqslant & C_{3} \max \left\{n^{-2 / 3}, 1-\left|x_{j n}\right| / a_{n}\right\}^{1 / 4}\left[\left|1-|x| / a_{n}\right|^{1 / 4}+n^{-1 / 6}\right]^{-1} \\
& \quad \quad(\operatorname{by}(2.12) \text { and }(2.13)) \\
\leqslant & C_{4}\left(\frac{\max \left\{n^{-2 / 3}, 1-\left|x_{j n}\right| / a_{n}\right\}}{\max \left\{n^{-2 / 3}, 1-|x| / a_{n}\right\}}\right)^{1 / 4} \leqslant C_{4} \lambda^{-1 / 4},
\end{aligned}
$$

as (2.21) does not hold. So we still have (2.18). Thus (2.18) holds for $x \in \mathbb{R}$.
(c) Consider the polynomial

$$
\tau_{j n}(x):=l_{j n}(x) W^{-1}\left(x_{j n}\right)
$$

We have

$$
\left(\tau_{j n} W\right)\left(x_{j n}\right)=1
$$

and according to (b) of this lemma,

$$
\left\|\tau_{j n} W\right\|_{L_{\infty}(\mathbb{R})} \leqslant C
$$

with C independent of j and n. Now let $\eta>0$ be fixed, and let

$$
\begin{equation*}
\varepsilon:=\varepsilon(j, n):=\eta \frac{a_{n}}{n} \max \left\{n^{-2 / 3}, 1-\left|x_{j n}\right| / a_{n}\right\}^{-1 / 2} \tag{2.22}
\end{equation*}
$$

Let $x_{1-1, n}$ and $x_{n+1, n}, l=1,2$, be as defined in (b). Now if η is small enough (the upper bound on η being independent of j, n), (2.11) and (2.12) show that uniformly for $1 \leqslant j \leqslant n$,

$$
\begin{equation*}
\left(x_{j n}-\varepsilon, x_{j n}+\varepsilon\right) \subset\left(x_{j-2, n}, x_{j+2, n}\right) . \tag{2.23}
\end{equation*}
$$

Furthermore, for $s \in\left(x_{j n}-\varepsilon, x_{j n}+\varepsilon\right)$, (2.13) and the Markov-Bernstein inequality Lemma 2.4 show that

$$
\left|\left(\tau_{j n} W\right)^{\prime}(s)\right| \leqslant C_{1} \frac{n}{a_{n}} \max \left\{n^{-2 / 3}, 1-\left|x_{j n}\right| / a_{n}\right\}^{1 / 2}
$$

Hence, if $t \in\left(x_{j n}-\varepsilon, x_{j n}+\varepsilon\right)$, we have for some s between t and $x_{j n}$,

$$
\begin{aligned}
\left|\tau_{j n} W\right|(t) & =\left|\left(\tau_{j n} W\right)\left(x_{j n}\right)+\left(\tau_{j n} W\right)^{\prime}(s)\left(t-x_{j n}\right)\right| \\
& \geqslant 1-C_{1} \frac{n}{a_{n}} \max \left\{n^{-2 / 3}, 1-\left|x_{j n}\right| / a_{n}\right\}^{1 / 2} \varepsilon \\
& =1-C_{1} \eta \geqslant 1 / 2
\end{aligned}
$$

if η in the choice (2.22) of ε is small enough. Thus

$$
\left|\tau_{j n} W\right|(t) \sim 1, \quad t \in\left(x_{j n}-\varepsilon, x_{j n}+\varepsilon\right)
$$

and recalling (2.17) and the definition of $\tau_{j n}$, we have (2.20).
Proof of Theorem 1. Fix $1 \leqslant j \leqslant n$, and with C_{1} as in (2.19), let

$$
\varepsilon:=C_{1} \frac{a_{n}}{n} \max \left\{n^{-2 / 3}, 1-\left|x_{j n}\right| / a_{n}\right\}^{-1 / 2}
$$

Then, recalling (2.23), we have

$$
\begin{aligned}
& \int_{x_{j-2, n}}^{x_{j+2, n}}\left|p_{n} W\right|(x)^{p} d x \\
& \geqslant C_{2} \int_{x_{j n}-\varepsilon}^{x_{j n}+\varepsilon}\left(n / a_{n}^{3 / 2} \max \left\{n^{-2 / 3}, 1-\left|x_{j n}\right| / a_{n}\right\}^{1 / 4}\right)^{p}\left|x-x_{j n}\right|^{p} d x \\
& \quad(\operatorname{by}(2.20)) \\
& \geqslant C_{3}\left(n / a_{n}^{3 / 2} \max \left\{n^{-2 / 3}, 1-\left|x_{j n}\right| / a_{n}\right\}^{1 / 4}\right)^{p} \varepsilon^{p+1} \\
& \geqslant C_{3} a_{n}^{1-p / 2 / n \max \left\{n^{-2 / 3}, 1-\left|x_{j n}\right| / a_{n}\right\}^{-p / 4-1 / 2}} \\
& \geqslant C_{4} a_{n}^{-p / 2}\left(x_{j-2, n}-x_{j+2, n}\right) \max \left\{n^{-2 / 3}, 1-\left|x_{j n}\right| / a_{n}\right\}^{-p / 4}
\end{aligned}
$$

(by (2.12) and (2.13))

$$
\geqslant C_{5} a_{n}^{-p / 2} \int_{x_{j}-2, n}^{x_{j+2, n}} \max \left\{n^{-2 / 3}, 1-|t| / a_{n}\right\}^{-p / 4} d t
$$

in view of (2.13). Summing, we have

$$
\begin{aligned}
& \int_{-\infty}^{\infty}\left|p_{n} W\right|(x)^{p} d x \\
& \quad \geqslant C_{5} a_{n}^{-p / 2} \int_{x_{n n}}^{x_{1 n}} \max \left\{n^{-2 / 3}, 1-|t| / a_{n}\right\}^{-p / 4} d t \\
& \quad=C_{5} a_{n}^{1-p / 2} \int_{x_{n n} / a_{n}}^{x_{1 /} / a_{n}} \max \left\{n^{-2 / 3}, 1-|s|\right\}^{-p / 4} d s \\
& \quad \geqslant C_{6} a_{n}^{1-p / 2} \int_{-1+C_{7 n}-2 / 3}^{1-C_{7 n}-2 / 3}(1-|s|)^{-p / 4} d s \quad(\text { by }(2.11))
\end{aligned}
$$

$$
\geqslant C_{7} a_{n}^{1-p / 2} \times \begin{cases}1, & p \leqslant 4 \\ \log n, & p=4 \\ \left(n^{-2 / 3}\right)^{1-p / 4}, & p>4\end{cases}
$$

Hence

$$
\left\|p_{n} W\right\|_{L_{p}(\mathbb{R})} \geqslant C_{8} a_{n}^{1 / p-1 / 2} \times \begin{cases}1, & p<4 \\ (\log n)^{1 / 4}, & p=4 \\ \left(n^{-2 / 3}\right)^{1 / p-1 / 4}, & p>4\end{cases}
$$

Together with Proposition 2.3, this yields the result.

References

1. G. Freud, "Orthogonal Polynomials," Pergamon Press/Akademiai Kiado, Budapest/ Oxford, 1971.
2. G. Freud and G. Nemeth, On the L_{p}-norms of orthonormal Hermite functions, Studia Sci. Math. Hungar. 8 (1973), 399-404.
3. A. L. Levin and D. S. Lubinsky, L_{∞} Markov and Bernstein inequalities for Freud weights, SIAM J. Math. Anal. 21 (1990), 1065-1082.
4. A. L. Levin and D.S. Lubinsky, Christoffel functions, orthogonal polynomials, and Nevai's conjecture for Freud weights, Constr. Approx. 8 (1992), 463-535.
5. H. N. Mhaskar and E.B. Saff, Extremal problems for polynomials with exponential weights, Trans. Amer. Math. Soc. 285 (1984), 203-234.
6. H. N. Mhaskar and E. B. Saff, Where does the sup-norm of a weighted polynomial live?, Constr. Approx. 1 (1985), 71-91.
7. P. Neval, Geza Freud, orthogonal polynomials and Christoffel functions: A case study, J. Approx. Theory, 48 (1986), 3-167.
8. P. Nevai, Orthogonal polynomials, Mem. Amer. Math. Soc. 213 (1979).

[^0]: * Research completed while the author was visiting Witwatersrand University.

