The Weighted L_p -Norms of Orthonormal Polynomials for Freud Weights

D. S. LUBINSKY

Department of Mathematics, University of the Witwatersrand, P.O. Wits 2050, Republic of South Africa

AND

F. Moricz*

Bolyai Institute, University of Szeged, Aradi Vertanuk tere 1, 6720 Szeged, Hungary

Communicated by Walter Van Assche

Received April 28, 1992; accepted September 21, 1992

Let $W := e^{-Q}$, where $Q: \mathbb{R} \to \mathbb{R}$ is even, continuous in \mathbb{R} , Q'' is continuous in $(0, \infty)$, and Q' > 0 in $(0, \infty)$, while for some A, B > 1,

$$A \le \frac{d}{dx} (xQ'(x))/Q'(x) \le B, \qquad x \in (0, \infty).$$

For example, $W(x) = \exp(-|x|^{\alpha})$, $\alpha > 1$, satisfies these hypotheses. Let $p_n(W^2, x)$ denote the *n*th orthonormal polynomial for the weight W^2 , $n \ge 1$, and let $a_n = a_n(Q)$ denote the *n*th Mhaskar-Rahmanov-Saff number for Q. We show that for $0 , and <math>n \ge 2$,

$$\|p_n(W^2,\cdot) W(\cdot)\|_{L_p(\mathbb{R})} \sim a_n^{1/p-1/2} \times \begin{cases} 1, & p < 4, \\ (\log n)^{1/4}, & p = 4, \\ (n^{-2/3})^{1/p-1/4}, & p > 4. \end{cases}$$

The results are based on bounds for $p_n(W^2, \cdot)$ established recently by A. L. Levin and one of the authors. © 1994 Academic Press, Inc.

1. INTRODUCTION AND RESULTS

Let $W^2 := e^{-2Q}$, where $Q: \mathbb{R} \to \mathbb{R}$ is even, continuous, and is of "smooth polynomial growth" at infinity. Such a weight is often called a *Freud weight* [7, p. 83ff], and perhaps the archetypal example is

$$W_{\alpha}(x) := \exp(-|x|^{\alpha}), \quad \alpha > 0.$$

* Research completed while the author was visiting Witwatersrand University.

Corresponding to the weight W^2 , we can define orthonormal polynomials

$$p_n(W^2, x) = \gamma_n x^n + \cdots, \qquad \gamma_n > 0, \ n \geqslant 0,$$

satisfying

$$\int_{-\infty}^{\infty} p_n(W^2, x) p_m(W^2, x) W^2(x) dx = \delta_{mn}, \quad m, n \ge 0.$$

Recently, A. L. Levin and the first author [4] established bounds for $p_n(W^2, x)$ for a class of Freud weights that includes $\exp(-|x|^{\alpha})$, $\alpha > 1$. Here we use these bounds, and other results in [3, 4] to estimate, both above and below, the L_p norms of $p_n(W^2, \cdot)$ $W(\cdot)$. Such L_p estimates are useful in studying convergence of Lagrange interpolation and orthogonal expansions in weighted L_p norms.

To state our result, we need the *Mhaskar-Rahmanov-Saff* number a_u [5, 6], the positive root of the equation

$$u = \frac{2}{\pi} \int_{0}^{1} a_{u} t Q'(a_{u}t) dt / \sqrt{1 - t^{2}}, \qquad u > 0.$$
 (1.1)

Under the conditions on Q below, which guarantee that Q(s) and Q'(s) increase strictly in $(0, \infty)$, a_u is uniquely defined, and increases with u. It grows roughly like $Q^{[-1]}(u)$, where $Q^{[-1]}$ denotes the inverse of Q on $(0, \infty)$.

We use \sim in the following sense: If $\{b_n\}_{n=0}^{\infty}$ and $\{c_n\}_{n=0}^{\infty}$ are sequences of non-zero real numbers, we write

$$b_n \sim c_n$$

if there exist C_1 , $C_2 > 0$ independent of n, such that

$$C_1 \leq b_n/c_n \leq C_2, \quad n \geq 1.$$

Following is our result:

THEOREM 1. Let $W := e^{-Q}$, where $Q : \mathbb{R} \to \mathbb{R}$ is even and continuous in \mathbb{R} , Q'' is continuous in $(0, \infty)$, and Q' > 0 in $(0, \infty)$, while for some A, B > 1,

$$A \leqslant \frac{d}{dx} (xQ'(x))/Q'(x) \leqslant B, \qquad x \in (0, \infty).$$
 (1.2)

Let $a_n = a_n(Q)$ denote the nth Mhaskar-Rahmanov-Saff number for Q. Then, given, $0 , we have for <math>n \ge 2$,

$$\|p_n(W^2,\cdot) W(\cdot)\|_{L_p(\mathbb{R})} \sim a_n^{1/p-1/2} \times \begin{cases} 1, & p < 4, \\ (\log n)^{1/4}, & p = 4, \\ (n^{-2/3})^{1/p-1/4}, & p > 4. \end{cases}$$
(1.3)

For $W(x) = W_{\alpha}(x) = \exp(-|x|^{\alpha})$, $a_n \sim n^{1/\alpha}$, and so we deduce that

$$\|p_n(W^2,\cdot) W(\cdot)\|_{L_p(\mathbb{R})} \sim n^{(1/\alpha)(1/p-1/2)} \times \begin{cases} 1, & p < 4, \\ (\log n)^{1/4}, & p = 4, \\ (n^{-2/3})^{1/p-1/4}, & p > 4. \end{cases}$$

For the Hermite weight W_2 , more precise asymptotics were given for p=4 by G. Freud and G. Nemeth [2], in connection with a problem of Cieselski on the monotonicity properties of the weighted L_p norms of orthonormal Hermite functions.

We prove the theorem in the next section.

2. Proofs

Throughout, C, C_1 , C_2 , ..., denote positive constants independent of n, x, and $P \in \mathcal{P}_n$, where \mathcal{P}_n denotes the set of real polynomials of degree $\leq n$. The same symbol does not necessarily denote the same constant in different occurrences.

As stated in the Introduction, our proofs depend on results from [4]. Throughout, we assume the hypotheses and notation of Theorem 1. First, we recall bounds from [4]: For simplicity, we write for $n \ge 1$,

$$p_n(x) := p_n(W^2, x).$$

LEMMA 2.1. (a) For $n \ge 1$,

$$\sup_{x \in \mathbb{R}} |p_n(x)| |W(x)| |1 - |x|/a_n|^{1/4} \sim a_n^{-1/2}, \tag{2.1}$$

and

$$\sup_{x \in \mathbb{R}} |p_n(x)| |W(x) \sim n^{1/6} a_n^{-1/2}, \tag{2.2}$$

(b) For $n \ge 1$ and $x \in \mathbb{R}$,

$$|p_n(x)| W(x) \le Ca_n^{-1/2}/[|1-|x|/a_n|^{1/4}+n^{-1/6}].$$
 (2.3)

Proof. (a) These are Corollary 1.4 in [4].

(b) This follows directly from (2.1) and (2.2).

Next, we recall a suitable infinite-finite range inequality:

LEMMA 2.2. Let 0 . There exists <math>C > 0 such that for $n \ge 1$ and $P \in \mathcal{P}_n$,

$$||PW||_{L_{p}(\mathbb{R})} \le C ||PW||_{L_{p}[-a_{n}, a_{n}]}.$$
 (2.4)

Proof. This is a special case of Theorem 1.8 in [4].

We can now prove the upper bounds implicit in (1.3):

PROPOSITION 2.3. Let $0 . There exists <math>C_2$ such that for $n \ge 2$,

$$\|p_{n}(W^{2},\cdot)W(\cdot)\|_{L_{p}(\mathbb{R})} \leq C_{2}a_{n}^{1/p-1/2} \times \begin{cases} 1, & p < 4, \\ (\log n)^{1/4}, & p = 4, \\ (n^{-2/3})^{1/p-1/4}, & p > 4. \end{cases}$$
 (2.5)

Proof. By Lemma 2.1(b), and Lemma 2.2,

$$||p_n W||_{L_p(\mathbb{R})}^p \le C_3 \int_{-a_n}^{a_n} a_n^{-p/2} [|1 - |x|/a_n|^{1/4} + n^{-1/6}]^{-p} dx$$

$$= 2C_3 a_n^{-p/2} \int_0^{a_n} [(1 - x/a_n)^{1/4} + n^{-1/6}]^{-p} dx$$

$$= 2C_3 a_n^{1 - p/2} n^{p/6 - 2/3} \int_0^{n^{2/3}} [t^{1/4} + 1]^{-p} dt, \qquad (2.6)$$

by the substitution $1 - x/a_n = n^{-2/3}t$. Here

$$\int_{0}^{n^{2/3}} \left[t^{1/4} + 1 \right]^{-p} dt \le 1 + \int_{1}^{n^{2/3}} t^{-p/4} dt \sim \begin{cases} (n^{2/3})^{1-p/4}, & p < 4, \\ \log n, & p = 4, \\ 1, & p > 4. \end{cases}$$
 (2.7)

Then (2.6) and (2.7) yield (2.5) on taking pth roots.

In proving the lower bounds corresponding to Proposition 2.3, we need more results from [3, 4]. First, we recall a Markov-Bernstein inequality:

LEMMA 2.4. For $n \ge 1$, $P \in \mathcal{P}_n$, and $x \in \mathbb{R}$,

$$|(PW)'(x)| \le C_1 \frac{n}{a_n} \max\{n^{-2/3}, 1 - |x|/a_n\}^{1/2} \|PW\|_{L_{\infty}(\mathbb{R})}.$$
 (2.8)

Proof. See [3, Theorems 1.1, 1.3, pp. 1066–1067]. Note that our restriction A > 1 forces

$$\int_1^{Cn} \frac{ds}{Q^{[-1]}(s)} \sim \frac{n}{a_n}.$$

See (1.26)–(1.27) and Lemma 5.2(f) in [4].

We denote the zeros of $p_n(x)$ by

$$-\infty < x_{nn} < x_{n-1,n} < \cdots < x_{2n} < x_{1n} < \infty$$
.

The fundamental polynomials of Lagrange interpolation are $l_{jn} \in \mathcal{P}_{n-1}$ satisfying

$$l_{in}(x_{kn}) = \delta_{ik}, \qquad 1 \leq j, \ k \leq n.$$

If we define the nth Christoffel function [7, p. 9]

$$\lambda_n(W^2, x) := \inf_{P \in \mathscr{P}_{n-1}} \int_{-\infty}^{\infty} (PW)^2(t) dt / P^2(x)$$
$$= 1 / \sum_{j=0}^{n-1} p_j^2(x),$$

then it is known that

$$l_{jn}(x) = \lambda_n(W^2, x_{jn}) \frac{\gamma_{n-1}}{\gamma_n} p_{n-1}(x_{jn}) \frac{p_n(x)}{x - x_{jn}}.$$
 (2.9)

See, for example, [8, p. 6] or [1, p. 23].

LEMMA 2.5. (a) For $n \ge 1$ and $|x| \le a_n$,

$$\lambda_n(W^2, x) \sim \frac{a_n}{n} W^2(x) \max \left\{ n^{-2/3}, 1 - \frac{|x|}{a_n} \right\}^{-1/2}.$$
 (2.10)

(b) For $n \ge 1$,

$$|x_{1n}/a_n - 1| \le Cn^{-2/3}, \tag{2.11}$$

and uniformly for $n \ge 3$ and $2 \le j \le n-1$,

$$x_{j-1,n} - x_{j+1,n} \sim \frac{a_n}{n} \max\{n^{-2/3}, 1 - |x_{jn}|/a_n\}^{-1/2}.$$
 (2.12)

(c) Uniformly for $n \ge 2$ and $1 \le j \le n-1$, $\max\{n^{-2/3}, 1 - |x_{in}|/a_n\} \sim \max\{n^{-2/3}, 1 - |x_{i+1,n}|/a_n\}. \tag{2.13}$

(d) Uniformly for
$$1 \le j \le n-1$$
 and $n \ge 2$,

$$|p_{n-1}(x_{in})| W(x_{in}) \sim a_n^{-1/2} \max\{n^{-2/3}, 1 - |x_{in}|/a_n\}^{1/4}. \qquad (2.14)$$

(e) For $n \ge 1$, $1 \le k \le n$, and $x \in \mathbb{R}$, $|p_n(x)| \ W(x) \le Cn/a_n^{3/2} \max\{n^{-2/3}, 1 - |x|/a_n\}^{1/4} |x - x_{kn}|.$ (2.15)

(f) For $n \ge 1$,

$$\gamma_{n-1}/\gamma_n \sim a_n. \tag{2.16}$$

Proof. (a) This is Theorem 1.1(a) in [4].

- (b) This is Corollary 1.2 in [4].
- (c) This is (11.10) in [4].
- (d) This is Corollary 1.3 in [4].
- (e) This is Theorem 12.3(a) in [4].
- (f) This is Theorem 12.3(b) in [4].

LEMMA 2.6. (a) Uniformly for $n \ge 1$, $1 \le j \le n$, and $x \in \mathbb{R}$,

$$|l_{jn}(x)| \sim a_n^{3/2}/nW(x_{jn}) \max\{n^{-2/3}, 1 - |x_{jn}|/a_n\}^{-1/4} \left| \frac{p_n(x)}{x - x_{jn}} \right|.$$
 (2.17)

(b) Uniformly for $n \ge 1$, $1 \le j \le n$, and $x \in \mathbb{R}$,

$$|l_{jn}(x)| W^{-1}(x_{jn}) W(x) \le C.$$
 (2.18)

(c) There exists $C_1 > 0$, such that uniformly for $n \ge 1$, $1 \le j \le n$, and

$$|x - x_{jn}| \le C_1 \frac{a_n}{n} \max\{n^{-2/3}, 1 - |x_{jn}|/a_n\}^{-1/2},$$
 (2.19)

we have

$$|p_n(x)| W(x) \sim n/a_n^{3/2} \max\{n^{-2/3}, 1 - |x_{jn}|/a_n\}^{1/4} |x - x_{jn}|.$$
 (2.20)

Proof. (a) This is an immediate consequence of (2.9), (2.10), (2.14), and (2.16).

(b) By (2.17) and (2.15), we have

$$|l_{jn}(x)| W^{-1}(x_{jn}) W(x) \le C \left(\frac{\max\{n^{-2/3}, 1 - |x|/a_n\}}{\max\{n^{-2/3}, 1 - |x_{jn}|/a_n\}} \right)^{1/4}.$$

If for some fixed $\lambda > 0$,

$$\max\{n^{-2/3}, 1 - |x|/a_n\} \le \lambda \max\{n^{-2/3}, 1 - |x_{in}|/a_n\}, \tag{2.21}$$

then we obtain (2.18). If we set

$$x_{1-l,n} := x_{1n} + la_n n^{-2/3}; \qquad x_{n+l,n} := x_{nn} - la_n n^{-2/3},$$

l=1, 2, then (2.13) shows that (2.21) is true for $x \in (x_{j-2,n}, x_{j+2,n})$, with a suitably large λ . On the other hand, if (2.21) is not true, so that $x \notin (x_{j-2,n}, x_{j+2,n})$, then (2.3) and (2.17) show that

$$\begin{split} |l_{jn}(x)| \ W^{-1}(x_{jn}) \ W(x) \\ & \leq C_2 a_n^{3/2}/n \ \max\{n^{-2/3}, \ 1 - |x_{jn}|/a_n\}^{-1/4} \\ & \times a_n^{-1/2} \big[|1 - |x|/a_n|^{1/4} + n^{-1/6} \big]^{-1} \ |x_{j\pm 2, n} - x_{jn}|^{-1} \\ & \leq C_3 \ \max\{n^{-2/3}, \ 1 - |x_{jn}|/a_n\}^{1/4} \ \big[|1 - |x|/a_n|^{1/4} + n^{-1/6} \big]^{-1} \\ & \text{ (by (2.12) and (2.13))} \\ & \leq C_4 \left(\frac{\max\{n^{-2/3}, \ 1 - |x_{jn}|/a_n\}}{\max\{n^{-2/3}, \ 1 - |x|/a_n\}} \right)^{1/4} \leq C_4 \lambda^{-1/4}, \end{split}$$

as (2.21) does not hold. So we still have (2.18). Thus (2.18) holds for $x \in \mathbb{R}$.

(c) Consider the polynomial

$$\tau_{in}(x) := l_{in}(x) W^{-1}(x_{in}).$$

We have

$$(\tau_{jn} W)(x_{jn}) = 1,$$

and according to (b) of this lemma,

$$\|\tau_{jn} W\|_{L_{\infty}(\mathbb{R})} \leq C,$$

with C independent of j and n. Now let $\eta > 0$ be fixed, and let

$$\varepsilon := \varepsilon(j, n) := \eta \, \frac{a_n}{n} \max\{n^{-2/3}, 1 - |x_{jn}|/a_n\}^{-1/2}. \tag{2.22}$$

Let $x_{1-l,n}$ and $x_{n+l,n}$, l=1, 2, be as defined in (b). Now if η is small enough (the upper bound on η being independent of j, n), (2.11) and (2.12) show that uniformly for $1 \le j \le n$,

$$(x_{jn} - \varepsilon, x_{jn} + \varepsilon) \subset (x_{j-2, n}, x_{j+2, n}). \tag{2.23}$$

Furthermore, for $s \in (x_{jn} - \varepsilon, x_{jn} + \varepsilon)$, (2.13) and the Markov-Bernstein inequality Lemma 2.4 show that

$$|(\tau_{jn}W)'(s)| \le C_1 \frac{n}{a_n} \max\{n^{-2/3}, 1 - |x_{jn}|/a_n\}^{1/2}.$$

Hence, if $t \in (x_{jn} - \varepsilon, x_{jn} + \varepsilon)$, we have for some s between t and x_{jn} ,

$$\begin{aligned} |\tau_{jn} W| &(t) = |(\tau_{jn} W)(x_{jn}) + (\tau_{jn} W)' &(s)(t - x_{jn})| \\ &\geqslant 1 - C_1 \frac{n}{a_n} \max\{n^{-2/3}, 1 - |x_{jn}|/a_n\}^{1/2} \varepsilon \\ &= 1 - C_1 \eta \geqslant 1/2, \end{aligned}$$

if η in the choice (2.22) of ε is small enough. Thus

$$|\tau_{in} W|(t) \sim 1, \qquad t \in (x_{in} - \varepsilon, x_{in} + \varepsilon),$$

and recalling (2.17) and the definition of τ_{in} , we have (2.20).

Proof of Theorem 1. Fix $1 \le j \le n$, and with C_1 as in (2.19), let

$$\varepsilon := C_1 \frac{a_n}{n} \max\{n^{-2/3}, 1 - |x_{jn}|/a_n\}^{-1/2}.$$

Then, recalling (2.23), we have

$$\int_{x_{j-2,n}}^{x_{j+2,n}} |p_n W| (x)^p dx$$

$$\geqslant C_2 \int_{x_{jn}-\varepsilon}^{x_{jn}+\varepsilon} (n/a_n^{3/2} \max\{n^{-2/3}, 1-|x_{jn}|/a_n\}^{1/4})^p |x-x_{jn}|^p dx$$

$$(by (2.20))$$

$$\geqslant C_3(n/a_n^{3/2} \max\{n^{-2/3}, 1-|x_{jn}|/a_n\}^{1/4})^p \varepsilon^{p+1}$$

$$\geqslant C_3 a_n^{1-p/2}/n \max\{n^{-2/3}, 1-|x_{jn}|/a_n\}^{-p/4-1/2}$$

$$\geqslant C_4 a_n^{-p/2} (x_{j-2,n}-x_{j+2,n}) \max\{n^{-2/3}, 1-|x_{jn}|/a_n\}^{-p/4}$$

$$(by (2.12) \text{ and } (2.13))$$

$$\geqslant C_5 a_n^{-p/2} \int_{x_{j-2,n}}^{x_{j+2,n}} \max\{n^{-2/3}, 1-|t|/a_n\}^{-p/4} dt,$$

in view of (2.13). Summing, we have

$$\int_{-\infty}^{\infty} |p_n W| (x)^p dx$$

$$\geqslant C_5 a_n^{-p/2} \int_{x_{nn}}^{x_{1n}} \max\{n^{-2/3}, 1 - |t|/a_n\}^{-p/4} dt$$

$$= C_5 a_n^{1-p/2} \int_{x_{nn}/a_n}^{x_{1n}/a_n} \max\{n^{-2/3}, 1 - |s|\}^{-p/4} ds$$

$$\geqslant C_6 a_n^{1-p/2} \int_{-1 + C_7 n^{-2/3}}^{1 - C_7 n^{-2/3}} (1 - |s|)^{-p/4} ds \qquad \text{(by (2.11))}$$

$$\geqslant C_7 a_n^{1-p/2} \times \begin{cases} 1, & p \leq 4, \\ \log n, & p = 4, \\ (n^{-2/3})^{1-p/4}, & p > 4. \end{cases}$$

Hence

$$||p_n W||_{L_p(\mathbb{R})} \ge C_8 a_n^{1/p - 1/2} \times \begin{cases} 1, & p < 4, \\ (\log n)^{1/4}, & p = 4, \\ (n^{-2/3})^{1/p - 1/4}, & p > 4. \end{cases}$$

Together with Proposition 2.3, this yields the result.

REFERENCES

- G. Freud, "Orthogonal Polynomials," Pergamon Press/Akademiai Kiado, Budapest/ Oxford, 1971.
- 2. G. Freud and G. Nemeth, On the L_{ρ} -norms of orthonormal Hermite functions, Studia Sci. Math. Hungar. 8 (1973), 399-404.
- 3. A. L. LEVIN AND D. S. LUBINSKY, L_{∞} Markov and Bernstein inequalities for Freud weights, SIAM J. Math. Anal. 21 (1990), 1065-1082.
- A. L. LEVIN AND D. S. LUBINSKY, Christoffel functions, orthogonal polynomials, and Nevai's conjecture for Freud weights, Constr. Approx. 8 (1992), 463-535.
- H. N. MHASKAR AND E. B. SAFF, Extremal problems for polynomials with exponential weights, Trans. Amer. Math. Soc. 285 (1984), 203-234.
- H. N. MHASKAR AND E. B. SAFF, Where does the sup-norm of a weighted polynomial live?, Constr. Approx. 1 (1985), 71-91.
- P. Nevai, Geza Freud, orthogonal polynomials and Christoffel functions: A case study, J. Approx. Theory, 48 (1986), 3-167.
- 8. P. NEVAI, Orthogonal polynomials, Mem. Amer. Math. Soc. 213 (1979).