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Let W:=¢ 9, where Q: R— R is even, continuous in R, @” is continuous in
(0, oc), and Q' >0 in (0, o), while for some A, B> 1,

A S% (xQ'(x))/Q(x)<B,  xe(0, ).

For example, W(x)=exp(—|x|®), a> |, satisfies these hypotheses. Let p, (W2 x)
denote the nth orthonormal polynomial for the weight W2 n>1, and let
a,=a,(Q) denote the nth Mhaskar-Rahmanov-Saff number for 0. We show that
forO<p<oc,and n22,

1, p<4,
P W2, ) WC Ly~ " 2 € (log m)"™, p=4
(n/l“})]s‘p—l‘e‘ﬂ p >4

The results are based on bounds for p,(W? ) established recently by A. L. Levin
and one of the authors.  © 1994 Academic Press, Inc.

1. INTRODUCTION AND RESULTS

Let W2 :=¢ 29, where Q: R — R is even, continuous, and is of “smooth
polynomial growth” at infinity. Such a weight is often called a Freud weight
[7, p. 83ff], and perhaps the archetypal example is

W, (x) :=exp(—|x|%), a>0.

* Research completed while the author was visiting Witwatersrand University.
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FREUD WEIGHTS 43
Corresponding to the weight W2, we can define orthonormal polynomials
Pn(Wzax)=}’nX"+"', yn>0’n>0a

satisfying

J1 PAW2 x)p (W2 x) Wix)dx=4,,, m, n=0.

— aC

Recently, A. L. Levin and the first author [4] established bounds for
p.(W? x) for a class of Freud weights that includes exp(—|x|*), a> 1.
Here we use these bounds, and other results in {3,4] to estimate, both
above and below, the L, norms of p,(W? -) W(-). Such L, estimates are
useful in studying convergence of Lagrange interpolation and orthogonal
expansions in weighted L, norms.

To state our result, we need the Mhaskar-Rahmanov—Saff number a,
[S, 6], the positive root of the equation

u=%J] auIQ'(au’)dt/\/l—tz’ u>0. (1.1)
T Yo

Under the conditions on Q below, which guarantee that Q(s) and Q'(s)
increase strictly in (0, o), a, is uniquely defined, and increases with w. It
grows roughly like Of~'I(u), where QU= '1 denotes the inverse of O on
(0, o).

We use ~ in the following sense: If {,}7_, and {c,}*_, are sequences
of non-zero real numbers, we write

b,~c,,
if there exist C,, C,>0 independent of n, such that

C,<b,/c,<C,, nzl.

Following is our result:

THEOREM 1. Let W:=e "¢ where Q: R — R is even and continuous in R,
Q" is continuous in (0, oc), and Q' >0 in (0, ov), while for some A, B> 1,

ASS (QUNQ (IS, xe(0,) (12)
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Let a,=a,(Q) denote the nth Mhaskar—Rahmanov—Saff number for Q.
Then, given, 0 < p < o0, we have for n>= 2,

1, p<A4,
P2, ) Wl )~ @,” 2 x { (log m)'7, p=4, (13)
(n12/3)1/p- l/4’ p >4

For W(x)= W, (x)=exp(—|x|*), a,~n"* and so we deduce that

1, p <4,
Ip W2 ) W) L)~ n VR =12 5 ) (log n)'4, p=4,
(n—2/3)1/p—l/4’ P>4

For the Hermite weight W,, more precise asymptotics were given for p=4
by G. Freud and G. Nemeth [2], in connection with a problem of Cieselski
on the monotonicity properties of the weighted L, norms of orthonormal
Hermite functions.

We prove the theorem in the next section.

2. PrROOFs

Throughout, C, C,, C,, .., denote positive constants independent of n, x,
and Pe #,, where #, denotes the set of real polynomials of degree <. The
same symbol does not necessarily denote the same constant in different
occurrences.

As stated in the Introduction, our proofs depend on results from [4].
Throughout, we assume the hypotheses and notation of Theorem 1. First,
we recall bounds from [4]: For simplicity, we write for n2> 1,

Pa(x) = p (W3 x).

LemMa 2.1. (a) Fornz=1,

sup |p(x)| W(x) |1 —[xl/a,|"*~a;'7? (2.1)
xeR
and
sup |p.(x)| W(x)~n"%a; "7, (2.2)
xeR

(b) Fornzl and xeR,

|PA(0)] W(x) < Ca, /01— |xl/a,| " +n~ V6], (2.3)
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Proof. (a) These are Corollary 1.4 in [4].
(b) This follows directly from (2.1) and (2.2). |

Next, we recall a suitable infinite-finite range inequality:

LEmMMA 2.2. Let 0<p< . There exists C>0 such that for n>2 1 and
Pe?,

(2.4)

an]”

PN Ly SC IPWI g,

Proof. This is a special case of Theorem 1.8 in [4]. |}

We can now prove the upper bounds implicit in (1.3):

PROPOSITION 2.3. Let 0 < p< . There exists C, such that for n=2,

1, p<4,
12a(W?, ) WO Ly < Caa, ™2 % { (log m) Y4, p=4 (2.5)
(n72/3)l/p—1/4, P>4

Proof. By Lemma 2.1(b), and Lemma 2.2,

||p,,W||'ZFm)<C3 j " an—P/Z[Il_le/an|1/4+n71/6]4p dx

—ay,

=2C,a;7 [ L1~ xfa,) "+ n 4] dx
(4]

23

=2Ca} o [T [ 1] d, (26)
0
by the substitution 1 — x/a, =n"**. Here
2 - (n2/3)1 p/4 p 4
j [+ 417" Pdt<1+j =74 dt ~ og n, p=4, (27)
° 1, p>4.

Then (2.6) and (2.7) yield (2.5) on taking pth roots. ||

In proving the lower bounds corresponding to Proposition 2.3, we need
more results from [3, 4]. First, we recall a Markov—Bernstein inequality:

LEMMA 24. Fornz=1, Pe?, and xe R,

((PW) (x)| < C, ai max{n~ % 1—|x|/a,}'"? |PWl )  (28)
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Proof. See [3, Theorems 1.1, 1.3, pp.1066-1067]. Note that our
restriction 4 > 1 forces

JA(‘n ds 1
v @ s) e,

See (1.26)(1.27) and Lemma 5.2(f) in [4]. ]
We denote the zeros of p,(x) by

— 0 < X,, <X < <Xy <Xy, < 0.

n—1l.n

The fundamental polynomials of Lagrange interpolation are l,e %,
satisfying

ljn(xkn)=5jk’ 1<, k<n.

If we define the nth Christoffel function [7, p.9]

LWL X = iof [ (PW) (1) diyyP(x)

Ped 1 ¥ —x
n—1
-13 pio
j=0
then it is known that

Yoo n X
L Py () Palx) (2.9)
X — X,

ljn(x) = }“n( W2’ xjn)

n

See, for example, [8, p. 6] or [1, p.23].

LEmMMA 2.5. (a) Fornz=1 and x| <a,,

-2
AW, x)~% W2(x) max {n*”, 1—‘—:—‘} . (2.10)

(b)y Fornz=l,
X in/a,— 1] < Cn~ %7, (2.11)

and uniformly for n=3 and 2<j<n—1,

X

a —_— -
jﬁl‘,,—xjﬂv,p,-n2 max{n~*’ 1—|x,l/a,} " (2.12)
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(c) Uniformly fornz2 and 1<j<n—1,
max{n=** 1—|x,l/a,} ~max{n~=** 1—|x;,,, ,/a,}.
(d) Uniformly for | <j<n—1andn=2,
|Pn—1(X0)] Wixj) ~ a2 max{n=2" 1 —|x,,|/a,} '

(¢) Fornz=1,1<k<n, and xeR,

|Pa(X)] W(x)< Cnfa})? max{n=2" 1 —|x|/a,}'"* |x = xp.

(f)y Fornz=1,

yn—l/yn~an'

Proof. (a) This is Theorem 1.1(a) in [4].
(b) This is Corollary 1.2 in [4].
(¢) This is (11.10) in [4].
(d) This is Corollary 1.3 in [4].
(e) This is Theorem 12.3(a) in [4].
(f) This is Theorem 12.3(b) in [4]. |}

LEMMA 2.6. (a) Uniformly fornz1, 1<j<n, and xeR,

Palx)

(0] ~ @ /m W (x5,) max (=2, 1= |xylfa, } =% | 22—
jn

(b} Uniformly for n>1, 1<j<n, and xeR,

()] W_I(xjn) W(x)<C.

47
(2.13)
(2.14)
(2.15)

(2.16)

’. (2.17)

(2.18)

(c) There exists C, >0, such that uniformly for n>1, 1<j<n, and

a _ —
Ix — x| <C, fmax{n B = |xlla,}

we have
|pa(x) W(x)~nfa}? max{n=27 1 —|x;,l/a,}"* |x — x,|.

640/77/1-4

(2.19)

(2.20)
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Proof. (a) This is an immediate consequence of (2.9), (2.10), (2.14),
and (2.16).

(b) By (2.17) and (2.15), we have

max{n=? 1—|x|/a,} \'"*
max{n~*’ 1 —|x,l|/a,}

()] W H(x,,) W(x) < C(

If for some fixed A >0,
max{n *’ 1—|x|/a,} <Amax{n~?* 1—|x,l/a,}, (2.21)

then we obtain (2.18). If we set

— -—2/3. — —2/3
xl—l,n""xln+[ann /7 xn+l,n‘-xrm—lann /,

I=1, 2, then (2.13) shows that (2.21) is true for x€(x;_, ,, X;, ,)» With
a suitably large 4. On the other hand, if (2.21) is not true, so that
X¢(x;_ 3 X;42 0) then (2.3) and (2.17) show that

() W™ (x,) W(x)
<C,a)%n max{n 21— |x,|/a,}
xa; L= 1xlfa,| Y 4 n Y] (% 0— Xal
<Cymax{n=?’ 1 —|x,l/a,}" [I1 = |xl/a | " +n 1o

(by (2.12) and (2.13))

max{n~? 1— |x,|/a,}\"*
SC 2 Jn n S 1—1/4,
4(max{n‘2/3,1—]x|/an} ) Ca

as (2.21) does not hold. So we still have (2.18). Thus (2.18) holds for x e R,
(c) Consider the polynomial

Tulx) = Lolx) W H(x,0).
We have
(T W)(x) = 1,
and according to (b) of this lemma,
1T Wl Lomy < G

with C independent of j and n. Now let # >0 be fixed, and let

. an — —_—
e:=¢(j,n):=n — max{n 1 —|x,l/a,} "> (2.22)
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Let x,_,, and x,.,,, {=1,2, be as defined in (b). Now if n is small
enough (the upper bound on # being independent of j, n), (2.11) and (2.12)
show that uniformly for 1 <j<n,

(Xj"—S, xjn+8)c(xj72,n’xj+2.n)' (223)

Furthermore, for se(x;, —e¢, x,+¢), (2.13) and the Markov-Bernstein
inequality Lemma 2.4 show that

(€ W) (5)] < €, 2= max{n™2%, 1= Ix,fa, } 2,

n

Hence, if 1€ (x;, —¢, x;, + &), we have for some s between ¢ and x,,

11 W1 (1) = (T, WH(x;,) + (2, W) (5)(1 — X;0)

n
=21—-C, ;— max{n’m, - Ixjnl/an}]/2 &

n

=1-Cinz1/2,
if n in the choice (2.22) of ¢ is small enough. Thus
lTn W1 (1) ~ 1, te(x;,—&, x; +¢),
and recalling (2.17) and the definition of 1;,, we have (2.20). |
Proof of Theorem 1. Fix 1<j<n, and with C, as in (2.19), let

£:=C, a;'i max{n~ %3, 1—|x,l/a,} "7
Then, recalling (2.23), we have

rm‘" [P, W] (x)? dx

Xj-2.n

Xjnt+ &
2 Cz J. (n/a3/2 max{ni2/3a 1 - |xjn‘/an}1/4)p |x _xjnlp dx

(by (2.20))
? C3(n/a’31/2 max{nAZ/S, 1 _ |xjnl/an}l/4)p 8p+1
= Cia, PP /nmax{n=*’1—|x,|/a,} 747
> Caa, P2 (X5 n— X410 p)max{n= 1 —|x;l/a,} 7
(by (2.12) and (2.13))
Xj+2,n

> Coay?? [ max{n ¥, 1 |1l/a,} "

Xj—2,n
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in view of (2.13). Summing, we have

[7 12wl (07 ax

Xln
> Csay?? [ max{n=, 1—|tl/a,} " di
Xnn

X{n/8n
=Csal =7 f l max{n=3 1—|s|} " ds
Xan/@n
L= Cn=
>Cﬁa;*f’/2f (1—Is|)~"*ds  (by (2.11))
—~1+ Cn=23
L P <4,
> Cyal "2 x < logn, p=4,
(=Pt p>4,
Hence
1, p <4,
122 W Ly = Ca,? ~ 2 x < (log n) ', p=4

(n—2/3)l/p~ 1/4, P>4

Together with Proposition 2.3, this yields the result. |
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